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We consider the evolution of finite uniform-vorticity regions in an unbounded inviscid 
fluid. We perform a perturbation analysis based on the assumption that the regions 
are remote from each other and nearly circular. Thereby we obtain a self-consistent 
infinite system of ordinary differential equations governing the physical-space 
moments of the individual regions. Truncation yields an Nth-order moment model. 
Special attention is given to the second-order model where each region is assumed 
elliptical. The equations of motion conserve local area, global centroid, total angular 
impulse and global excess energy, and the system can be written in canonical 
Hamiltonian form. Computational comparison with solutions to the contour- 
dynamical representation of the Euler equations shows that the model is useful and 
accurate. Because of the internal degrees of freedom, namely aspect ratio and 
orientation, two like-signed vorticity regions collapse if they are near each other. 
Although the model becomes invalid during a collapse, we find a striking similarity 
with the merger process of the Euler equations. 

1. Introduction 
Ideally, one wishes to solve the 2-dimensional Euler equations for realistic initial 

conditions in bounded and unbounded domains. However, there is no algorithm for 
all seasons. In recent years the continuum equations have been represented by 
finite-difference, finite-element, pseudospectral and particle-in-cell algorithms. At the 
other extreme, mathematical and physical insight has been obtained from ‘point ’ 
vortex and invariant-core vortex (ICV) models (also called ‘blob ’ models). Recently, 
Zabusky and colleagues introduced the contour-dynamics (CD) approach as an 
intermediate representation for the Euler equations. Here, piecewise-constant finite- 
urea vortex regions which we call FAVORS can be described rigorously by the motion 
of the contour bounding the regions. One expects that the limit of a many-nested 
contour region would give solutions that approach continuum solutions of the Euler 
equations. In any case, one-contour representations have provided a richness of 
mathematical and physical insights, mainly through computation. For a recent 
discussion of some of these developments see the reviews by Leonard (1980), Aref 
(1983) and Zabusky (1984). 

The equations for a point-vortex representation define a Hamiltonian system. They 
have been used for linear and nonlinear stability studies and in recent years for 
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investigations of chaotic behaviour. However, because of their singular nature, they 
are computationally undesirable, and circular ICVs have been used, as reviewed by 
Leonard (1980). Recently, nice results on convergence to the continuum have been 
obtained if the core radius 6 cc hQ, where h is the mean intercore distance and q < 1. 
That is, the particles overlap strongly in the limit of decreasing h. However, few cogent 
computations exist - namely, those that are computationally demanding, of sufficient 
duration and carefully diagnosed. For example, Beale & Majda (1984) have examined 
the evolution of smooth circular symmetric states for up to 4.5 eddy turnaround times 
with 208 particles. A more demanding calculation by Nakamura, Leonard & Spalart 
(1982) investigated the evolution of a 4/3 elliptical FAVOR that was approximated 
with 256 vortices. However, only one period of rotation was examined. 

In $2 we propose a model of well-separated vortex entities - each assumed to be 
an almost circular FAVOR. Under these assumptions a perturbation analysis leads 
to an infinite system of coupled ordinary differential equations for physical-space 
moments of the individual regions. If truncated, a self-consistent closed model is 
obtained at  any order. Unlike the ICV model, the accuracy is not obtained by overlap 
of cores but through the excitation of internal degrees of freedom on each FAVOR. 

In $3 we discuss the simplest second-order model obtained by omitting third- and 
higher-order moments. For the following mathematical and physical reasons, we 
represent the second-order moments of each region by an elliptical FAVOR. The 
isolated elliptical FAVOR - Kirchoff s elliptical vortex - is a steady state solution of 
the Euler equations. Kida (1981) found that the isolated elliptical shape is preserved 
exactly in an arbitrary strain field, us = Axez-Bye, ,  even as the aspect ratio and 
orientation vary in time. Neu (1984) generalized these considerations of elliptical 
vortices by including an out-of-plane strain velocity component. McWilliams (1984), 
in 2-dimensional pseudospectral simulations, found that localized elliptically shaped 
regions of vorticity of various sizes emerge from initial conditions with power-law 
spectra and random phases. When these vortical regions become well-separated they 
approach circular symmetry. Furthermore, from CD (Overman & Zabusky 1982) and 
high-resolution pseudospectral (Melander, McWilliams & Zabusky 1986) simulations, 
we find a near-elliptical shape emerge from two closely interacting, initially circular 
vorticity distributions. Also, image-processing methods have been used by Hernan 
& Jimenez (1982) to study data from free-shear-layer experiments, and the elliptical 
shape has been found to be a reasonable and computationally convenient form. Thus 
we have a low-order model where each FAVOR is characterized by its centroid 
position, aspect ratio and orientation. The two internal degrees of freedom are 
sufficient to capture aspects of the often observed convective merger (Winant & 
Browand 1974). Using the second-order model, we observe that two like-signed 
FAVORS approach and ‘ collapse ’ (their intercentroid distance vanishes) within a 
finite time, provided they are initially sufficiently close together. We find agreement 
between critical ‘ collapse ’ distances of the model and critical merger distances of the 
Euler equations. 

In $4 we examine the conservation laws of the model. We find that the local area, 
local centroid and the total angular impulse are conserved for any order of the model. 
For the second-order model the energy is also conserved. In fact this model forms 
a Hamiltonian system. 

Section 5 compares the model’s doubly connected corotating and translating 
steady-state solutions against those of the Euler equations. Finally, we examine 
evolutions and validate them by comparing against CD-results. 

A brief and preliminary account of this work was published by Melander, Styczek 
& Zabusky (1984). 
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FIGURE 1.  The parameters defining the geometry for interacting FAVORs. Shown are two elliptical 
regions D,  and D,  with aspect ratios A, = a,/b, and A, = a,/b, introduced in the second-order 
moment model in $3. 

2. Formulation of a moment model 
We consider Ndomains D, (FAVORs) of area A, and vorticity w, on the (2, y)-plane. 

For convenience, we choose the origin as the centroid of global vorticity (except of 
course when the centroid is a t  infinity). We introduce N local coordinate systems 
(c,, v,), one for each domain D,. The origin of the kth coordinate system is at x,, 
the centroid of the kth FAVOR and the axes are parallel to  the inertial system axes 
as shown in figure 1. 

Our goal is to  formulate evolution equations for the centroid x, and the local 
geometrical moments 

I n  order to obtain these equations we apply perturbation techniques that require the 
following. 

H1: The maximum diameter of any FAVOR is much smaller than the minimum 
distance between any two centroids. 

H2: The centroid of any FAVOR is within the FAVOR itself. 

These conditions must be satisfied by the initial conditions. As time evolves, one or 
both conditions may be violated and our approach will become invalid. The first 
condition requires that the FAVORs be well-separated and allows us to introduce 
the perturbation parameter 

E = maximum FAVOR diameter/minimum intercentroid distance, (2.2) 

which is time dependent. At t = 0 we choose the minimum intercentroid distance as 
a characteristic unit length. Thereby B becomes a small parameter if H1 is valid. Thus 

), (2.3) JfEm.n) = 0 p + n + 2  

and we have a basis for omitting higher-order moments in our perturbation 
procedure. 

Assumption H2 enables us to introduce another perturbation parameter, d,, which 

( 
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is used in the self-interaction computation. Let y be a point on the boundary of the 
kth FAVOR; then we define a mean radius of the FAVOR by 

(2.4) rk = $(max I y - xk I + min I y- xk I ) 

and 

Here p > 1 is a constant that  we introduce because of convergence considerations. 
dk is used in the power-series expansion ln ( 1  +dk) = dk-!& + . . . . If p 2 2 then 
ldkl < 1, because of H2, and the series is convergent, but is not an asymptotic 
expansion about Iy-xk I = rk. If p = 1 the series becomes an asymptotic expansion. 
However, I dk I might be larger than unity, causing the series to be divergent. 

The incompressible Euler equations, in vorticity/stream function form are 

(2.6) _-  Do = w t + w X + v w y  = 0, A+ = - w ,  
Dt 

where the velocity field is 

I n  order to apply perturbation techniques, we decompose the velocity field u into a 
near field uk and a far field Uk: 

(2.7) 

where the near field is generated only by the kth FAVOR, whereas the far field is 
due to  the remaining remote FAVORS. Both velocity fields can be expressed in terms 
of stream functions : 

l.4 = (u, v) = (+y, -+,). 

u = Uk + ukj 

uk = +k? -ax $k), 

uk = ( a y  ykj -ax yk). 

where 

and 

The prime means a =k k. 

theorem). The centroid of the kth FAVOR is defined by 
The area A, of each domain is an invariant because (D/Dt ) jDk  w da = 0 (Kelvin's 

xk = j D k  dg, (2.10) 

and we obtain the evolution equation for xk by differentiating with respect to  time : 

(uk + uk) da = uk da.  
= s,, J D k  

Here we have used the fact that  a FAVOR cannot displace its own centroid, i.e. the 
centroid motion is governed by the far field only. If we expand uk(x) about xk we 
obtain 

m q  

kk = A i l  x x j p q - p )  a p a q - p  2 Y u k (  . (2.11) 
q-0 p-0 P ! ( Q - P ) !  X k  



Moment model for vortex interactions. Part 1 99 

We derive the evolution equation for the local geometrical moments in a similar 
manner. Starting from the definition (2. l ) ,  we have 

where 
r 

(2.13) 

represents the kth FAVORs self-interaction, while the second term describes the 
influence of the other FAVORs. Now we expand u k  and u, around x,, so that we 
can express the integrals in (2.12) in terms of the local geometrical moments. 

F?r convenience, we write the far-field stream function Y, as a sum of normalized 
stream functions Yk,, one for each of the remote FAVORs, or 

where 
r 

Y&) = In I xu + c,- x 1 da. 
JD, 

(2.14) 

(2.15) 

Because of (Hl) ,  all FAVORs are well-separated, or 1 x, - x I % I c, I for x E D,. Hence 
we expand the logarithm in (2.15): 

((y -yu)2 - (2 - 2 , ) Z )  JP.0) - 4(2 - 2,) (y - y,) J2.1) + ((2 -2,y - (y - yu)? J p 2 '  

2 I x - xu 14 
+ 
+. . . .  (2.16) 

Thus the far-field velocity is obtained from Y, by substituting (2.16) into (2.14). 

namely 
Similarly, the near-field velocity is used to obtain the evolution of Jk?wn) in (2.13), 

j ( ( m , n )  *k = m(Jjcm,n) U 5 ~ x k + ~ i m - 1 . n + l )  u?) I Xk) 

+ ,(Jjcm+l, n-1) . . , (2.17) 

where u,(x) has been expanded about xk or 

u& = [Ek u k + r k  uk + * * * 1 IC-0. (2.18) 
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To show that the singularity is only apparent, we use Green's theorem and convert 
to  a line integral 

(2.19) 

Because of H2, the centroid of the kth FAVOR is not on the boundary (i.e. 
E~+T,$  > 0) ,  and we expand the logarithm as discussed above: 

where rk is a mean radius defined in (2.4). We substitute into (2.19) and convert back 
to a domain integral which provides us with a moment expansion 

In lowest order this is 

( 2 . 2 2 ~ )  

(2.22b) 

which when substituted into (2.17) yields our lowest self-interaction terms. We can 
combine results and write (2.12) as 

J p n )  = j(m,n)+{[-(n~(m+i.n-1)),~+(,_,) *k j p n )  a,a, 
+ (mJp-1. n+l) a;] + . . . + + A L ~  - m~lt"-i. n) a Y + n ~ p  n-1) a,] 
X [ J ( k , 0 ) a ~ + 2 J ~ ~ ' ) a , a Y + J ~ . 2 ) a ~ + .  . .]} vkIxk. (2.23) 

Equations (2.23) and (2.1 1)  constitute an infinite system of ordinary differential 
equations. Since we do not know the shape of the FAVORS, we are not able to 
calculate rk. Thus we use the approximation ?k = (Ak/n): .  This, however, has the 
disadvantage that we cannot be sure of the convergence of (2.20) for FAVORs that  
are extremely distorted from circular symmetry. 

3. The second-order moment model 
We make the system of equations (2.1 1)  and (2.23) finite and closed in any order 

by omitting all terms of higher order. If we omit second- and higher-order moments 
we obtain the well-known point-vortex model. The second-order model has three 
interrelated moments which define an ellipse. As discussed in 9 1,  nearly elliptical 
vortex regions arise frequently in laboratory experiments and computer simulations. 
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Furthermore, the isolated elliptical FAVOR (Kirchhoff s elliptical vortex) is a 
steady-state solution rotating with constant angular velocity 

a = wA/( l  +A)2 ,  (3.1) 

where h is the aspect ratio of the ellipse. Thus the second-order model is exceptional 
because we can use (3.1) for self-interaction velocity calculations instead of the 
expansion of (2.17). 

The moments of inertia for an ellipse with aspect ratio h = a /b  and with the major 
axis tilted at 4 are 

Using (3.1), we find that the self-interaction can be expressed as 

uA2 l - A  
j p o )  = -- sin 24, 

47t l + h  (3.5) 

wA* l - h  
47t l + h  

j p  = --- cos 24. (3.7) 

where R, and 6, are defined through 

x-x, = R,(cos 6,, sin 0,). (3.14) 

Since we have assumed all FAVORS to be ellipses, we have five unknowns, xk, yk, 
A,, A, and $,, and six equations for each FAVOR. Therefore the system (3.8)-(3.12) 
is either overdetermined or it is possible to derive the area conservation (3.8) from 
the moment evolution equations (3.10)-(3.12). For an ellipse the area is related to 
the moments of inertia through 

A4k = Jf.0)JLO92)- JL1 , l )JP . l ) .  (3.15) 
167t2 
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We calculate the time derivative of this expression using the moment evolution 
equations (3.10)-(3.12), and find that the time derivative of the right-hand side of 
(3.15) vanishes. Therefore area conservation is implied by the moment evolution 
equations. If we define the axis of the ellipse by 

(3.16) 

we maintain the area conservation, and one of the moment evolution equations 
can be omitted. Thus we now only have the variables h k ,  q5,, xk and the constants 

ak. 
We shall now derive equations governing A, and 4,. The sum and difference of the 

main moments are 

(3.17) 

(3.18) 

We differentiate (3.17) and (3.18), apply the moment evolution equations and obtain 

and 

(3.19) 

where xk-xa = Rka(cosBka, sineka). Obviously, (3.20) has a singularity for h k  = 1 
owing to the fact that  q5, is not defined for A, = 1 .  Equations (3.19) and (3.20) are 
multi-FAVOR generalizations of Kida's equation (2.9) for one elliptical vortex in a 
strain field. In  order to  obtain a suitable set of equations for numerical studies, we 
remove the singularity by introducing 

(3.21) 

Equations (3.19) and (3.20) become 

(3.22) 
A 

8, = 
4n 

2+-(8 i+yi )  a=1 

and 

? k =  4= 'k , (3.23) 
2+-(8 i+yi )  a=1 

where ra = Aawa.  These equations do not have any singularities as long as H1 is 
satisfied. (However, if H1 is not fulfilled R,, may be small and we are in serious 
trouble numerically.) 
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The equation for the centroid motion is 

1 I- 2 S, sin 38,, - y, cos 38,, 
- 8, cos 38k ,  - y, sin 38k, 

103 

(3.24) 

(3.25) 

Thus the equations constituting our numerical model are (3.22), (3.23) and (3.25). 

is not a consideration in the derivation of the evolution equations. 
The moment model is complete in every order, and the explicit shape of a FAVOR 

4. Conserved quantities 

functional of vorticity F(w)  
The 2-dimensional Euler equations conserve the following : 

global centroid 

angular impulse 

z~wzx-xwdu  d = 0; 
(4.3) 

excess energy (see Batchelor 1967, 57.3) 

-+(d/dt)l w* w $ d a  = 0. (4.4) 

For contour dynamics and the moment models, the first three are conserved. 
In both cases, (4.1) corresponds to area conservation. In both cases, the centroid is 
conserved because the velocity field is a double integral over a kernel with odd 
symmetry. Finally, in both cases the rate of change of angular impulse is 

which vanishes because u = V x e, $ and $ is an integral over a kernel which depends 
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only on a scalar distance. For reference, we write M for the second-order moment 
model : 

M = J R z w r x  du 

N 

k-1 

N 

k-1 

= x . kJb ,  [ ( x k  + g k ) 2  + (Yk + qk)21 d‘ 

= fdk A k ( X ;  + ’&) + Wk(Jf’’) + Jp’ 2)) 

Here the first term is the same as in the point-vortex model while the second is a 
correction due to  the ellipticity of the FAVOR. 

For the second-order model we calculate the excess energy as 

N 

k-1 
H E - -  ; J R 2 w w o  = - x bJDk(h+ YJda7 (4.6) 

where the first term is the self-energy of the kth FAVOR while the second term is 
the interaction energy. We prefer to use a stream function ~ whose asymptotic 
representation does not contain a constant term. This requires introducing a 
normalization length 

N N 

k-1 k-1 
L = In n ( Z J ~ C W , ) ~ ~ ’ ~ ~ ,  f = Z l f k 1 7  

since 

Thus for an elliptical FAVOR with major axis parallel to the x-axis the inner stream 
function, by continuity with the outer, becomes 

subject to the length unit (A/n): .  Since the normalization constant depends on A,  it 
is of importance for the calculation of H by (4.4).  The expression for the self-energy 
becomes 
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which has a minimum at A, = 1. The interaction energy is given through 

wk @a 
N = +  x’ ~ { A k + $ @ ” a ; + J ~ ” ’ a  6 ,  a +‘Jp2’a2+ 2 11 . . . ) y k a ( , k .  

C r = l  

(4.9) 

Now we apply the same approximation to Yka as in Section 3, that is, y k a  is a 
polynomial of second degree. Thus the infinite series above truncates after the 
second-order moments, and we obtain 

Combining (4.8) and (4.10), we find 

where 
A =  H , + H c + H I ,  

(4.10) 

(4.11) 

(4.12) 

The tilde - indicates a truncated expansion of H in (4.6), H .  is the self- (or internal) 
energy and is evaluated exactly for elliptical FAVORS, H,, depends only on the 
intercentroid distances (and is identical with the energy of N point vortices), and H I  
is an interaction energy correct to the leading term in the small parameter (the 
second-order model). 

The time derivative of A is 

By inspection we find 
c y k  = 

4 g k  = -a,,A 

(4.13) 

(4.14) 

(4.15) 
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(similar to  the Hamiltonian form of the point-vortex model). For the other variables 
we find 

-- G A k  1-A;4 k -  - -aAkR, (4.16) 
87t A; 

(4.17) 

Substituting (4.14)-(4.17) into (4.13) yields the energy conservation for the second- 
order moment model. A set of canonical variables for (4.16) and (4.17) is 

as seen by inspection. Another set, useful in numerical simulations, is (8k, yk), defined 
in (3.21). In these variables the Hamiltonian is 

Furthermore, the evolution equations satisfy 

aH rkjk = - 

and 

(4.18) 

(4.19) 

(4.20) 

Note the invariance of fl ( H  in the elliptical order) follows because the internal 
stream function (4.7) is a quadratic polynomial which is consistent with the quadratic 
polynomials that  describe the far-field stream function (2.16) in this order. 

5. Computational examples 
I n  this section we apply the second-order moment model to a few well-known 

problems. We demonstrate its validity by showing that i t  is capable of accurately 
describing solutions of the Euler equations that have been found by the CD-method. 

5.1. Steady-state solutions - ' E V-states ' 
The model is particularly simple when applied to steady-state solutions. First we will 
compare doubly-connected symmetric corotating states. A parameter table for 
V-state solutions of Euler equations can be found in Overman & Zabusky (1982). 

The model steady-state solutions or 'EV-states ' are obtained from (3.19), (3.20) 
and (3.24) with symmetric ellipses of area A a t  (xl, y l )  and ( -zl, - y l )  and vorticity 
density w1 = w2 = u. These states are characterized by the dimensionless centroid 
separation ,u = R,,(IK/A):. For steady-state solutions we set A = 0 and obtain from 
(3.19) 0 = 4 mod in. Substituting this into (3.20), we find that 4 = 6 is constant in 
time. From (3.24) we obtain dR:,/dt = 0 and 
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Since = 8, we obtain from (3.20) an equation for the aspect ratio A :  

1 1 1 - A 2  A l + A 2  1 
-[I--+- /42 2/42 A (1 + A ) 2  +-- 1 -A2 2/42' 

which is equivalent to the quintic equation 

0 = h5 + (1 + 3p2) A'+ (3p2 -2/4'-2) A3 - (2 +/4' - 2 ~ ' )  A'+ (1 -p2) A + 1. (5.2) 

We find physically meaningful roots for ,u >, p,. w 2.9384. There are two: one that 
approaches 1 as ,u tends to infinity. In the limit p+pRe3. these two roots form a 
double root A,, x 2.05, as shown in the @-', A-')-diagram of figure 2. 

The stability of these corotating E V-states can be determined theoretically. We 
express the parameter p in terms of A and the moment of inertia M (which is a 
conserved quantity of the model) : 

47tM 2(A2+1) 
TA A -  

2/42 = -- 

Hence we write (3.19)-(3.21) in the abstract form 

- = F( Y; a), 
d Y  
dt 

(5.3) 

(5.4) 

where Y = (x, y, A, #) and u = 4nMITA is a constant of motion. According to the 
factorization theorem of Joseph & Nield (1975) there is an exchange of stability of 
the steady states a t  the minimum value of u, because this is a turning point in the 
(a, A)-diagram. Numerically, the turning point is obtained for ,u = p,, x 2.9396 
(Acr x 2.36). Clearly, the solid solution branch of figure 2 is the stable one since A+ 1 
as p+ co ; hence the other branch is unstable. This result compares favourably with 
the estimate of Saffman & Szeto (1980) and Dritschel(i985). They used the symmetric 
corotating contour-dynamical V-states and predicted instability for p < 3.16 and 
,u < 3.20 respectively. 

Table 1 compares results obtained from the present model, a point-vortex 
equivalent and the 'exact' CD-solutions. From this table we see good agreement 
between the Euler equations and our model even in cases where the perturbation 
parameter is large. Note that the aspect ratio for the CD-results is not based on 
second-order moments but is simply the length of a FAVOR divided by the width. 
Because the states corresponding to large values of the perturbation parameter are 
more almond-shaped (see Overman & Zabusky 1982) than the ellipse, the model may 
give an aspect ratio that is actually better than appears from the table. Furthermore, 
we notice that the model yields a much better approximation to the angular velocity 
than the point-vortex model. 

Next, we consider the doubly connected, symmetric, translating EV-states of our 
model. Let two elliptical FAVORS with the same area A and aspect ratio A,  but 
opposite-signed vorticity densities be situated symmetrically around the x-axis as 
shown in figure 3. 

= 0 implies 0 = q5 mod in, and thereby 4 = 6 = 0. 
Thus the state propagates in the x-direction with velocity 

The steady-state requirement 

or 

(5.5) 
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FIQURE 2. Reciprocal aspect ratio A-  ’ versus reciprocal dimensionless centroid separation p-’ for 
symmetric corotating EV-states. The solid line and dashed line represent linearly stable and 
unstable regimes respectively. The (+ )  show comparable CD results given in Overman & Zabusky 
(1982). The (V) (p = 2.960, A = 2.374) corresponds to the unstable evolution shown in figures 5 (a, 
b), and (A) (p = 2.960, h = 1.819) corresponds to the stable evolution shown in figure 5(c). 

Contour dynamics Moment model Point vortex 

de 
No.? /” n dt h dt dt 

- de - 1 
- 

de - 1 
- 

1 18.0542 0.9943 0.003068 0.9938 0.003068 0.003068 
3 8.1322 0.9685 0.01513 0.9683 0.01513 0.015 12 
5 4.9210 0.9044 0.04146 0.9052 0.04146 0.041 29 
6 4.0684 0.8499 0.06108 0.8499 0.06101 0.06042 
7 3.5054 0.7597 0.08344 0.7747 0.08309 0.081 38 
8 3.2052 0.6395 0.1027 0.6983 0.1008 0.097 33 
9 3.1742 0.5726 0.1073 0.687 1 0.1030 0.099 25 

10 3.2004 0.5342 0.1074 0.2787 0.1134 0.097 63 
t The number in the first column refers to the contour number in figure 1 of Overman & Zabusky 

(1 982). 

TABLE 1. Comparison between contour dynamics and the moment model for symmetric doubly 
connected rotating V-states 

where p = R,,(n/A)t and we have normalized lengths such that 

2 = 2 b + R l 2 = 2  (nph): - +R,, ,  

so that (5.7) 
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'f 

I 
FIGURE 3. Schematic of a translating E V-state. 

Using (3.20), we find that the aspect ratio satisfies 

A l + A 2  1 
O=- +-- 

(1 + A)Z 1 - A 2  2/32' 

which is equivalent to the cubic equation 

o = ~3+(1-2/32) ~ 2 + ( 1 + 2 ~ 2 )  A + I .  
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(5.9) 

For y,, x 1.8249 there is a double root A,, x 2.89, and an unphysical negative root. 
For ,u > p T .  there are two positive roots, as shown in figure 4. Table 2 compares 
model, point-vortex and CD (Wu, Overman & Zabusky 1984) results. (For the 
point-vortex results the opposite circulations are separated by RI2 given in (5.7).) For 
translating EV-states we cannot use the factorization theorem because r = 0 and no 
appropriate constant of the motion is available. Instead, the stability of the states 
is determined by a numerical study. As shown in figure 4, the exchange of stability 
occurs at  ,u = pTer  x 1.8269, ATcr x 2.73, where the solid curve is the stable region 
and the dashed curve the unstable region. 

5.2. Dynamical simulations 

We investigate the stability and long-time evolution of the perturbed stationary 
corotating EV-states located at the triangles on figure 2 via numerical solutions of 
(3.22), (3.23) and (3.25). The perturbations are selected to keep A ,  r and 
g( = 4 n M / r A )  the same as for the unperturbed state. The simplest perturbation 
satisfying this restriction is obtained by changing the orientation of the ellipses. (Note 
that (4.5) shows that M is independent of $.) 

The state (V) is linearly unstable to a symmetric perturbation $1(0) = $z(0)  = S. 
However, the long-time evolution is sensitive to the sign of 6. If 6 is negative, 
S = -0.001', the centroid distance decreases monotonically, and vanishes a t  
t = 0.761, a process we call 'collapse '. (Obviously, the assumptions on which the model 
are based have been violated during this time.) Figure 5 (a )  shows the initial divergent 
evolution of log,, (Rlz( t ) /R12(0))  (solid curve) and log,, ( A ( t ) / A ( O ) )  (dashed curve). For 
6 = 0.001" we get an initial exponential divergence and long-time recurrence, with 
t ,  = 1.15 as shown in figure 5(6 ) .  Note that the intercentroid distance does not 
decrease below its initial value, and periodically increases to R,,/R,,(O) = 1.04. 



110 M .  V. Melander, N .  J .  Zabusky and A .  S. Styczek 

0 0.2 0.4 0.6 

1 I P  

FIGURE 4. Same coordinates as figure 2 for a symmetric translating EV-state. The solid and dashed 
lines correspond to  linearly stable and unstable regimes, respectively. The ( + )  show comparable 
CD-results from Wu et al. (1984). 

Contour dynamics Moment model Point vortex 

dx dx 
A dt A dt dt 

- dx - - 

37.98 
17.94 
11.25 
7.865 
5.822 
4.416 
3.375 
2.518 
1.721 

1.001 
1.006 
1.016 
1.033 
1.061 
1.107 
1.188 
1.348 
1.747 

6.64'4 
2.79'-3 
6.72'-3 
0.0129 
0.0221 
0.0355 
0.0557 
0.0885 
0.149 

1.001 
1.006 
1.016 
1.033 
1.061 
1.108 
1.195 
1.399 

6.57'4 
2.7 8'-3 
6.69'-3 
0.0129 
0.0221 
0.0355 
0.0558 
0.0890 
no solution 

6.57'4 
2.78'-3 
6.69'-3 
0.0129 
0.0221 
0.0357 
0.0567 
0.0941 

t The number in the first column refers to the contour number in table 1 of Wu et al. (1984). 

TABLE 2. Comparison between contour dynamics and the moment model for symmetric doubly 
connected translating V-states 

Similarly the aspect ratio decreases periodically to h(t)/h(O) = 0.549, a more circular 
state. 

The state (A) is linearly stable, and figure 5 ( c )  shows the results of imposing an 
unsymmetrical perturbation S = lo, much larger than imposed on the unstable states. 
For the time shown, the response remains small and the intercentroid distance is 
quasi- periodic. 

For the translating EV-states, we imposed several types of perturbations and 
conclude that there are two types of instabilities for h > 2.73. We illustrate the first 
type in figure 6 ( a ) ,  where the 2.89: 1 ellipses are perturbed symmetrically with 
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FIGURE 5. Diagnostics In 1 R,(t)/R,(O) 1 (-) and In 1 A,(t)/h,(O) 1 (----) for the evolution of 
perturbed unstable and stable corotating EV-states at ,u = 2.960: (a) unstable, h-l(O) = 0.421 23, 
$ , (O)  = $ J O )  = -0.00lo; (b )  unstable, A;l(O) = 0.42123, $ , (O)  = $2(0) = +0.00lo; (c) stable, 
A;'(O) = 0.54970, Cl(0) = - l .Oo,  $2(0) = O .  (In all cases w1 = w2 = 100.0.) 

(&, q5L) = ( -  lo, + 1"). (Note U = upper and L = lower.) We observe a monotonic 
increase of aspect ratio and 14 I and a decrease of centroid velocity. After t = 24, 
where h = 4.3, the aspect ratio increases rapidly and the model becomes invalid. One 
observes the bizarre unphysical result that the elongating state reverses its propagation 
direction. Note that during this calculation the intercentroid separation is time- 
independent, as can be verified from the equations of motion. 

The evolution of the second asymmetric instability is shown in figure 6 ( b ) .  Here 
the 2.89: 1 ellipses are perturbed with (q5u, q5L) = (-  lo, 0"), and we observe that the 
upper ellipse elongates monotonically while the lower remains undisturbed. This 
causes a dramatic change in propagation direction, an indication that the upper 
FAVOR would be wrapped around the lower in a CD-simulation. Such a response 
would probably cause the FAVOR pair to enter a curved orbit. 

We now validate the model by comparing with a non-merging CD-solution. We 
begin with two circular FAVORS, the left with radius R, = 1.0, and the right with 
radius R ,  = 0.2, and an intercentroid distance R,, = 2.0. The small FAVOR has 
vorticity density 2.5 while the large has w = 1. (Note that the parameters for this 
run were incorrectly given in the text and figure caption of Melander et al. (1984).) 
This stable situation was calculated by Overman & Zabusky (1982). Our results are 
shown in figure 7 and comparisons are made in table 3. (Note that for the CD-solutions 
h and q5 are obtained by fitting second-order moments to the contours.) For the model 
the solution is quasi-periodic with periods = 63.2 and = 14.5 for the aspect ratio 
of the larger and smaller FAVOR respectively. For the CD-solutions the comparable 
periods are = 66.7 and T, = 15.3, a good result considering that the perturbation 
parameter p - l  x (A , /n ) f /R , ,  x 0.5,  is not small. The CD-solution is known only for 
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T = O  

T =  16 
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T=24 

............... 
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T=O 

T=22 
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T=29 

................................ 

I 

3 i 

FIQURE 6. Evolution of translating EV-states of aspect ratio 2.89 and wu = -oL = 1.0: (a) 
symmetric perturbation (&, q5L) = ( -  lo, + lo);  ( b )  unsymmetric perturbation (q5u, &,) = (-lo, 0). 

t < 38, and is obtained by extrapolation. We have continued the model solution 
for several hundred units of time and have continued to observe a quasi-periodic 
solution. 

If the initial intercentroid distance is decreased from 2.0 to 1.8 the CD-simulations 
of Overman & Zabusky (1982) exhibit a merger at t x 20.0. For our model this change 
in initial conditions leads to  a collapse of the centroids a t  tc = 25.4, that is, where 
R,,(tc) = 0. Furthermore, for two identical circular FAVORS a t  t = 0, CD-simulations 
of Zabusky, Hughes & Roberts (1979) show a merger occurring near y z 3.40, 
whereas our model shows a transition to collapse a t  y x 3.2. A third correspondence 
between merger and collapse occurs when one perturbs symmetric corotating V-states 
and corresponding E V-states. From Overman & Zabusky's CD-simulations (1982), 
we know that certain perturbations of unstable V-states lead to merger. For our model 
such perturbations result in centroid collapse. 

6. Discussion and conclusions 
We have introduced a general self-consistent desingularization procedure for the 

2-dimensional Euler equations. Thus we have found a representation (or model) in 
the hierarchy between the point (i.e. singular) or invariant-core vortex approaches and 
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FIGURE 7. Evolution of corotating initially circular FAVORs via the moment model. A comparison 
with CD-results is given in table 3. Here R,,(O) = 2.0, A,  = R ,  A, = 0 . 0 4 ~  and o1 = w,/2.5 = 1.0. 
(Note that this is the same as figure 2 in Melander et al. (1984), except that their figure caption 
is in error as well as their material in the text describing this figure.) 

4 2  4 2  A t  9t 

t EE model EE model EE model EE model 

0 2.0 2.0 0 0 1 .o 1 .o 
10 1.966 1.969 80.8" 80.6" 1.239 1.229 245.8' 245.7' 

0.5843 0.591 339.7" 340.3' 

20 1.955 1.964 166.5' 165.1' 1.281 1.251 354.2' 355.7' 
1.812 1.593 533.7' 541.2" 

30 1.995 1.998 248.8' 246.4' 1.075 1.040 464.5' 466.3' 
1.137 1.125 735.5' 748.2' 

38 1.989 1.985 312.2' 310.0' 0.884$ 0.862 553.5' 555.1' 
0.964$ 0.745 942.4' 912.3' 

t Upper entry is A,, the larger area; lower entry is A,, the smaller area. 
$ A < 1 is chosen to maintain continuity of 9 through A = 1. 

TABLE 3. Comparison of a near-periodic solution of Euler equations via contour dynamics and the 
model 

- - 

the continuum contour-dynamical (CD) approach for FAVORS. The former involves 
coupled ordinary differential equations (two per vortex) and the latter coupled 
integrodifferential equations. Our general moment model equations of motion involve 
centroids and moments of many initially isolated vortex regions and are derived by 
an asymptotic expansion in two small parameters: d,, related to the deviation from 
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circularity, and ek, proportional to the area of the FAVOR divided by the square of 
the interFAVOR distance. I n  essence, CD is easier to visualize, but more difficult to 
solve analytically than the moment model. 

The second-order moment model given in (3.19), (3.20) and (3.24) (or (3.25)) 
introduces two additional dependent variables per vortex, an  aspect ratio and an 
orientation. They are associated with an elliptical shape and are related physically 
to  internal degrees of freedom. The model exactly conserves area (circulation), global 
centroid position, and angular impulse. The model forms a Hamiltonian system, with 
the excess energy as the Hamiltonian. 

We have compared this model with contour-dynamical steady states (‘ V-states’) 
and dynamical simulations and have obtained remarkably good results. In  particular, 
the elliptically desingularized model can exhibit the ‘collapse ’ of two vortex centres, 
a process mathematically analogous to the initial approach to merger or pairing 
observed for CD-simulations. For symmetric initial conditions, we can find analytical 
solutions (Melander et al. 1986). In this case the Hamiltonian system is integrable 
and can be reduced to a phase-plane analysis, where the trajectories are the level 
curves of n, (4.11). As the vortex centres approach during a merger, the model 
becomes increasingly invalid. It is possible that by, introducing appropriate topology 
changes, we will be able to continue the simulations for very long times. 

I n  work in progress we are applying the moment method to  the two-dimensional 
Navier-Stokes equations with very small viscosity. If we assume smooth vorticity 
distributions and truncate after second moments, we find that the area of each 
FAVOR increases while its circulation remains constant (and obviously the vorticity 
decreases), a property of the Navier-Stokes equations (Poincar6 1893). Furthermore, 
the global moment of inertia obeys the Poincar6 identity a,M = 4vT, (Poincar6 1893; 
Howard 1957/58), where M is given in (4.5). 

This work was supported in part by the U.S. Army Research Office under Contract 
DAAG-29-82-K-0067. We are grateful to E. A. Overman for helpful conversations 
and assistance with contour-dynamical results. One of us (N. Z. )  acknowledges 
conversations with J. Marsden and R. Montgomery as well as information from the 
latter which led us to  find a transformation to  canonical variables. 
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